Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1265386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928534

RESUMO

Genetic variation for disease resistance is present in salmonid fish; however, the molecular basis is poorly understood, and biomarkers of disease susceptibility/resistance are unavailable. Previously, we selected a line of rainbow trout for high survival following standardized challenge with Flavobacterium psychrophilum (Fp), the causative agent of bacterial cold water disease. The resistant line (ARS-Fp-R) exhibits over 60 percentage points higher survival compared to a reference susceptible line (ARS-Fp-S). To gain insight into the differential host response between genetic lines, we compared the plasma proteomes from day 6 after intramuscular challenge. Pooled plasma from unhandled, PBS-injected, and Fp-injected groups were simultaneously analyzed using a TMT 6-plex label, and the relative abundance of 513 proteins was determined. Data are available via ProteomeXchange, with identifier PXD041308, and the relative protein abundance values were compared to mRNA measured from a prior, whole-body RNA-seq dataset. Our results identified a subset of differentially abundant intracellular proteins was identified, including troponin and myosin, which were not transcriptionally regulated, suggesting that these proteins were released into plasma following pathogen-induced tissue damage. A separate subset of high-abundance, secreted proteins were transcriptionally regulated in infected fish. The highest differentially expressed protein was a C1q family member (designated complement C1q-like protein 3; C1q-LP3) that was upregulated over 20-fold in the infected susceptible line while only modestly upregulated, 1.8-fold, in the infected resistant line. Validation of biomarkers was performed using immunoassays and C1q-LP3, skeletal muscle troponin C, cathelcidin 2, haptoglobin, leptin, and growth and differentiation factor 15 exhibited elevated concentration in susceptible line plasma. Complement factor H-like 1 exhibited higher abundance in the resistant line compared to the susceptible line in both control and challenged fish and thus was a baseline differentiator between lines. C1q-LP3 and STNC were elevated in Atlantic salmon plasma following experimental challenge with Fp. In summary, these findings further the understanding of the differential host response to Fp and identifies salmonid biomarkers that may have use for genetic line evaluation and on-farm health monitoring.


Assuntos
Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Suscetibilidade a Doenças , Complemento C1q , Proteômica , Infecções por Flavobacteriaceae/microbiologia , Água
2.
FEMS Microbiol Ecol ; 98(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047934

RESUMO

Aquaculture is an important tool for solving the growing worldwide food demand, but infectious diseases of farmed animals represent a serious roadblock to continued industry growth. Therefore, it is essential to understand the microbial communities that reside within the built environments of aquaculture facilities to identify reservoirs of bacterial pathogens and potential correlations between commensal species and specific disease agents. Here, we present the results from 3 years of sampling a commercial rainbow trout aquaculture facility. We observed that the microbial communities residing on the abiotic surfaces within the hatchery were distinct from those residing on the surfaces at the facility's water source as well as the production raceways, despite similar communities in the water column at each location. Also, a subset of the water community seeds the biofilm communities. Lastly, we detected a common fish pathogen, Flavobacterium columnare, within the hatchery, including at the source water inlet. Importantly, the relative abundance of this pathogen was correlated with clinical disease. Our results characterized the microbial communities in an aquaculture facility, established that the hatchery environment contains a unique community composition and demonstrated that a specific fish pathogen resides within abiotic surface biofilms and is seeded from the natural water source.


Assuntos
Doenças dos Peixes , Microbiota , Oncorhynchus mykiss , Animais , Aquicultura , Doenças dos Peixes/microbiologia , Flavobacterium/genética , Água Doce/microbiologia , Água
3.
Front Genet ; 13: 936806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812729

RESUMO

Bacterial cold water disease (BCWD) is an important disease in rainbow trout aquaculture. Previously, we have identified and validated two major QTL (quantitative trait loci) for BCWD resistance, located on chromosomes Omy08 and Omy25, in the odd-year Troutlodge May spawning population. We also demonstrated that marker-assisted selection (MAS) for BCWD resistance using the favorable haplotypes associated with the two major QTL is feasible. However, each favorable haplotype spans a large genomic region of 1.3-1.6 Mb. Recombination events within the haplotype regions will result in new haplotypes associated with BCWD resistance, which will reduce the accuracy of MAS for BCWD resistance over time. The objectives of this study were 1) to identify additional SNPs (single nucleotide polymorphisms) associated with BCWD resistance using whole-genome sequencing (WGS); 2) to validate the SNPs associated with BCWD resistance using family-based association mapping; 3) to refine the haplotypes associated with BCWD resistance; and 4) to evaluate MAS for BCWD resistance using the refined QTL haplotypes. Four consecutive generations of the Troutlodge May spawning population were evaluated for BCWD resistance. Parents and offspring were sequenced as individuals and in pools based on their BCWD phenotypes. Over 12 million SNPs were identified by mapping the sequences from the individuals and pools to the reference genome. SNPs with significantly different allele frequencies between the two BCWD phenotype groups were selected to develop SNP assays for family-based association mapping in three consecutive generations of the Troutlodge May spawning population. Among the 78 SNPs derived from WGS, 77 SNPs were associated with BCWD resistance in at least one of the three consecutive generations. The additional SNPs associated with BCWD resistance allowed us to reduce the physical sizes of haplotypes associated with BCWD resistance to less than 0.5 Mb. We also demonstrated that the refined QTL haplotypes can be used for MAS in the Troutlodge May spawning population. Therefore, the SNPs and haplotypes reported in this study provide additional resources for improvement of BCWD resistance in rainbow trout.

4.
Front Immunol ; 12: 721048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630394

RESUMO

Infectious hematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum are major pathogens of farmed rainbow trout. Improved control strategies are desired but the influence of on-farm environmental factors that lead to disease outbreaks remain poorly understood. Water reuse is an important environmental factor affecting disease. Prior studies have established a replicated outdoor-tank system capable of varying the exposure to reuse water by controlling water flow from commercial trout production raceways. The goal of this research was to evaluate the effect of constant or pulsed reuse water exposure on survival, pathogen prevalence, and pathogen load. Herein, we compared two commercial lines of rainbow trout, Clear Springs Food (CSF) and Troutex (Tx) that were either vaccinated against IHNV with a DNA vaccine or sham vaccinated. Over a 27-day experimental period in constant reuse water, all fish from both lines and treatments, died while mortality in control fish in spring water was <1%. Water reuse exposure, genetic line, vaccination, and the interaction between genetic line and water exposure affected survival (P<0.05). Compared to all other water sources, fish exposed to constant reuse water had 46- to 710-fold greater risk of death (P<0.0001). Tx fish had a 2.7-fold greater risk of death compared to CSF fish in constant reuse water (P ≤ 0.001), while risk of death did not differ in spring water (P=0.98). Sham-vaccinated fish had 2.1-fold greater risk of death compared to vaccinated fish (P=0.02). Both IHNV prevalence and load were lower in vaccinated fish compared to sham-vaccinated fish, and unexpectedly, F. psychrophilum load associated with fin/gill tissues from live-sampled fish was lower in vaccinated fish compared to sham-vaccinated fish. As a result, up to forty-five percent of unvaccinated fish were naturally co-infected with F. psychrophilum and IHNV and the coinfected fish exhibited the highest IHNV loads. Under laboratory challenge conditions, co-infection with F. psychrophilum and IHNV overwhelmed IHNV vaccine-induced protection. In summary, we demonstrate that exposure to reuse water or multi-pathogen challenge can initiate complex disease dynamics that can overwhelm both vaccination and host genetic resistance.


Assuntos
Aquicultura , Suscetibilidade a Doenças , Doenças dos Peixes/etiologia , Doenças dos Peixes/prevenção & controle , Oncorhynchus mykiss/genética , Vacinas , Microbiologia da Água , Animais , Coinfecção , Exposição Ambiental , Doenças dos Peixes/diagnóstico , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Imunização , Prognóstico , Vacinas/imunologia
5.
J Aquat Anim Health ; 33(3): 190-195, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288128

RESUMO

Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease (BCWD), causes significant economic losses worldwide, particularly in farmed Rainbow Trout Oncorhynchus mykiss. Over the last decade, multilocus sequence typing has revealed >30 clonal complexes (CCs) globally, comprised of >320 F. psychrophilum sequence types (STs). Despite the large number of CCs worldwide, CC-ST10, which is currently the largest CC affecting Rainbow Trout, has been the primary focus of F. psychrophilum virulence studies, leaving the role of other CCs as primary causes of BCWD epizootics unclear. To this end, fingerling Rainbow Trout were experimentally challenged with F. psychrophilum strains belonging to the CC now recognized as the second largest in the world (CC-ST191) alongside CC-ST10 strains. Cumulative percent mortality was 100% in 7-month-old Rainbow Trout and between 27.8% and 61.1% in 8-month-old Rainbow Trout. All examined F. psychrophilum STs were virulent to Rainbow Trout, and no significant differences in virulence between CC-ST10 and CC-ST191 were detected. Due to their wide distribution and high pathogenic potential, both CC-ST191 and CC-ST10 F. psychrophilum strains are excellent candidates for further research aimed at preventing and controlling BCWD.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Animais , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/genética , Tipagem de Sequências Multilocus/veterinária
6.
Front Genet ; 12: 639355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732289

RESUMO

Genomic structural variants (SVs) are a major source of genetic and phenotypic variation but have not been investigated systematically in rainbow trout (Oncorhynchus mykiss), an important aquaculture species of cold freshwater. The objectives of this study were 1) to identify and validate high-confidence SVs in rainbow trout using whole-genome re-sequencing; and 2) to examine the contribution of transposable elements (TEs) to SVs in rainbow trout. A total of 96 rainbow trout, including 11 homozygous lines and 85 outbred fish from three breeding populations, were whole-genome sequenced with an average genome coverage of 17.2×. Putative SVs were identified using the program Smoove which integrates LUMPY and other associated tools into one package. After rigorous filtering, 13,863 high-confidence SVs were identified. Pacific Biosciences long-reads of Arlee, one of the homozygous lines used for SV detection, validated 98% (3,948 of 4,030) of the high-confidence SVs identified in the Arlee homozygous line. Based on principal component analysis, the 85 outbred fish clustered into three groups consistent with their populations of origin, further indicating that the high-confidence SVs identified in this study are robust. The repetitive DNA content of the high-confidence SV sequences was 86.5%, which is much higher than the 57.1% repetitive DNA content of the reference genome, and is also higher than the repetitive DNA content of Atlantic salmon SVs reported previously. TEs thus contribute substantially to SVs in rainbow trout as TEs make up the majority of repetitive sequences. Hundreds of the high-confidence SVs were annotated as exon-loss or gene-fusion variants, and may have phenotypic effects. The high-confidence SVs reported in this study provide a foundation for further rainbow trout SV studies.

7.
Dev Comp Immunol ; 116: 103961, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301795

RESUMO

Nk-lysin (Nkl), an antimicrobial peptide (AMP) product of natural killer cells and cytotoxic T cells in mammals, has recently been characterized in a number of finfish species. In this study, we identified six genes with sequence homology to Nkl and characterized their patterns of mRNA expression and abundances in rainbow trout (Oncorhynchus mykiss). The cDNA sequences for the six Nkls encoded precursor peptides of 128-133 aa in length, and mature peptides of 109-111 aa in length. Genomic DNA of the nkl1-4 genes consisted of five exons and four introns, whereas the nkl-like a & b genes consisted of four exons and three introns. Chromosomal locations of these peptides show that nkl1 was located on chromosome arm 25q, whereas the other five nkl genes were clustered on chromosome arm 19q. Phylogenetic analysis revealed a conserved structure of Nkls among the teleosts and further protein sequence analyses suggests that all six nkl genes fall within the Nkl sub-family of the Saposin family of proteins. Patterns of tissue-specific mRNA expression were asymmetric among the six trout Nkl homologues, with nkl1, nkl3, and nkl-like a & b occurring in immune competent organs such as spleen, gill, intestine and kidney, as well as pineal gland, brain and oocytes. However, nkl2 and nkl4, showed primary abundances in brain, pineal gland and oocyte tissues. Using mRNA sequencing, in whole-body pools of juvenile trout fry (1 g bw) exposed to Flavobacterium psychrophilum infection, we observed modest up-regulation (2-3 fold) of five (nkl 2-4 and nkl-like a & b) of the six nkl mRNAs over the five-day post-challenge time-course. However, no upregulation could be recorded in spleen tissue measured by qPCR in juvenile trout (270 g bw). Using mRNA sequencing again, mRNA abundances were determined in gill of juvenile trout (~57.7 g bw) exposed to various aquaculture stressors. The results indicated that all six nkls (nkl1-4 and nkl-like a and nkl-like b) were downregulated when exposed to high temperature, and that nkl1 was significantly downregulated following salinity challenge. Overall, these newly characterized AMPs may contribute to host innate immunity as they are modulated following pathogen challenge and by physiological stressors.


Assuntos
Peptídeos Antimicrobianos/genética , Proteínas de Peixes/genética , Oncorhynchus mykiss/imunologia , Proteolipídeos/genética , Sequência de Aminoácidos , Animais , Aquicultura , Mapeamento Cromossômico , Flavobacterium/fisiologia , Expressão Gênica , Brânquias/metabolismo , Imunidade Inata/genética , Oncorhynchus mykiss/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Baço/metabolismo , Estresse Fisiológico , Distribuição Tecidual
8.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32532872

RESUMO

Flavobacterium psychrophilum causes bacterial cold-water disease in wild and aquaculture-reared fish and is a major problem for salmonid aquaculture. The mechanisms responsible for cold-water disease are not known. It was recently demonstrated that the related fish pathogen, Flavobacterium columnare, requires a functional type IX protein secretion system (T9SS) to cause disease. T9SSs secrete cell surface adhesins, gliding motility proteins, peptidases, and other enzymes, any of which may be virulence factors. The F. psychrophilum genome has genes predicted to encode components of a T9SS. Here, we used a SacB-mediated gene deletion technique recently adapted for use in the Bacteroidetes to delete a core F. psychrophilum T9SS gene, gldN The ΔgldN mutant cells were deficient for secretion of many proteins in comparison to wild-type cells. Complementation of the mutant with wild-type gldN on a plasmid restored secretion. Compared to wild-type and complemented strains, the ΔgldN mutant was deficient in adhesion, gliding motility, and extracellular proteolytic and hemolytic activities. The ΔgldN mutant exhibited reduced virulence in rainbow trout and complementation restored virulence, suggesting that the T9SS plays an important role in the disease.IMPORTANCE Bacterial cold-water disease, caused by F. psychrophilum, is a major problem for salmonid aquaculture. Little is known regarding the virulence factors involved in this disease, and control measures are inadequate. A targeted gene deletion method was adapted to F. psychrophilum and used to demonstrate the importance of the T9SS in virulence. Proteins secreted by this system are likely virulence factors and targets for the development of control measures.


Assuntos
Sistemas de Secreção Bacterianos/genética , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Flavobacterium/patogenicidade , Oncorhynchus mykiss , Fatores de Virulência/genética , Animais , Sistemas de Secreção Bacterianos/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/genética , Virulência
9.
Front Microbiol ; 10: 1041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139169

RESUMO

Little is known about the underlying basis of serotype specificity among strains of Flavobacterium psychrophilum, the agent of rainbow trout fry syndrome and bacterial cold-water disease. The identification of different heat-stable O-serotypes among strains of this gram-negative pathogen does, however, suggest structural variations in the O-polysaccharide (O-PS) moiety of cell surface lipopolysaccharide (LPS). A trisaccharide composed of L-rhamnose (L-Rha), 2-acetamido-2-deoxy-L-fucose (L-FucNAc) and 2-acetamido-4-R-2,4-dideoxy-D-quinovose (D-Qui2NAc4NR), where R represents a dihydroxyhexanamido derivative, was previously identified as the repeating unit of Fp CSF259-93 O-PS. Interestingly, the O-PS gene cluster of this strain and that of Fp 950106-1/1, which belongs to a different O-serotype, are identical except for wzy, which encodes the putative polymerase that links trisaccharide repeats into O-PS chains. We have now found from results of glycosyl composition analysis and high-resolution nuclear magnetic resonance, that the linkage of D-Qui2NAc4NR to L-Rha, which is α1-2 for Fp CSF259-93 versus ß1-3 for Fp 950106-1/1, is the only structural difference between O-PS from these strains. The corresponding difference in O-serotype specificity was established from the reactions of rabbit and trout anti-F. psychrophilum antibody with purified O-PS and LPS. Moreover, LPS-based differences in antigenicity were noted between strains with O-PS loci identical to those of Fp CSF259-93 or Fp 950106-1/1, except for the genes predicted to direct synthesis of different R-groups in Qui2NAc4NR. The findings provide a framework for defining the genetic basis of O-PS structure and antigenicity and suggest that the repertoire of F. psychrophilum O-serotypes extends beyond what is presently recognized from serological studies of this important fish pathogen.

10.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658978

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), causes significant economic losses in salmonid aquaculture, particularly in rainbow trout (Oncorhynchus mykiss). Prior studies have used multilocus sequence typing (MLST) to examine genetic heterogeneity within F. psychrophilum At present, however, its population structure in North America is incompletely understood, as only 107 isolates have been genotyped. Herein, MLST was used to investigate the genetic diversity of an additional 314 North American F. psychrophilum isolates that were recovered from ten fish host species from 20 U.S. states and 1 Canadian province over nearly four decades. These isolates were placed into 66 sequence types (STs), 47 of which were novel, increasing the number of clonal complexes (CCs) in North America from 7 to 12. Newly identified CCs were diverse in terms of host association, distribution, and association with disease. The largest F. psychrophilum CC identified was CC-ST10, within which 10 novel genotypes were discovered, most of which came from O. mykiss experiencing BCWD. This discovery, among others, provides evidence for the hypothesis that ST10 (i.e., the founding ST of CC-ST10) originated in North America. Furthermore, ST275 (in CC-ST10) was recovered from wild/feral adult steelhead and marks the first recovery of CC-ST10 from wild/feral fish in North America. Analyses also revealed that at the allele level, the diversification of F. psychrophilum in North America is driven three times more frequently by recombination than random nucleic acid mutation, possibly indicating how new phenotypes emerge within this species.IMPORTANCEFlavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS), both of which cause substantial losses in farmed fish populations worldwide. To better prevent and control BCWD and RTFS outbreaks, we sought to characterize the genetic diversity of several hundred F. psychrophilum isolates that were recovered from diseased fish across North America. Results highlighted multiple F. psychrophilum genetic strains that appear to play an important role in disease events in North American aquaculture facilities and suggest that the practice of trading fish eggs has led to the continental and transcontinental spread of this bacterium. The knowledge generated herein will be invaluable toward guiding the development of future disease prevention techniques.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/isolamento & purificação , Animais , Aquicultura , Canadá/epidemiologia , Doenças dos Peixes/epidemiologia , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/classificação , Flavobacterium/genética , Genótipo , Tipagem de Sequências Multilocus , Oncorhynchus mykiss/microbiologia , Filogenia
11.
J Anim Sci ; 97(3): 1124-1132, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576516

RESUMO

Family-based selective breeding can be an effective strategy for controlling diseases in aquaculture. This study aimed to estimate (co)variance components for resistance to bacterial cold water disease (BCWD) and columnaris disease (CD) in two unrelated rainbow trout nucleus breeding populations: the USDA, ARS, National Center for Cool and Cold Water Aquaculture odd-year line (ARS-Fp-R), which has been subjected to five generations of selection for improved resistance to BCWD, and the Troutlodge, Inc., May-spawning odd-year line (TLUM), which has been selected for improved growth performance but not for disease resistance. A total of 46,805 and 27,821 pedigree records were available from both populations, respectively. Between 44 and 138 families per generation and population were evaluated under controlled BCWD and CD challenges, providing 32,311 and 17,861 phenotypic records for BCWD resistance, and 13,603 and 9,413 for CD resistance, in the ARS-Fp-R and TLUM populations, respectively. A two-trait animal threshold model assuming an underlying normal distribution for the binary survival phenotypes was used to estimate (co)variance components separately for each population. Resistance to BCWD (h2 = 0.27 ± 0.04 and 0.43 ± 0.08) and CD (h2 = 0.23 ± 0.07 and 0.34 ± 0.09) was moderately heritable in the ARS-Fp-R and TLUM populations, respectively. The genetic correlation between the resistance to BCWD and CD was favorably positive in the ARS-Fp-R (0.40 ± 0.17) and TLUM (0.39 ± 0.18) populations. These findings suggest that both disease resistance traits can be improved simultaneously even if genetic selection pressure is applied to only one of the two traits.


Assuntos
Infecções Bacterianas/veterinária , Resistência à Doença/genética , Doenças dos Peixes/imunologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Oncorhynchus mykiss/genética , Animais , Aquicultura , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Cruzamento , Feminino , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/microbiologia , Masculino , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/microbiologia , Linhagem , Fenótipo
12.
Fish Shellfish Immunol ; 86: 497-506, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30513381

RESUMO

Commensal microorganisms present at mucosal surfaces play a vital role in protecting the host organism from bacterial infection. There are multiple factors that contribute to selecting for the microbiome, including host genetics. Flavobacterium psychrophilum, the causative agent of Bacterial Cold Water Disease in salmonids, accounts for acute losses in wild and farmed rainbow trout (Oncorhynchus mykiss). The U.S. National Center for Cool and Cold Water Aquaculture has used family-based selective breeding to generate a line of rainbow trout with enhanced resistance to F. psychrophilum. The goal of this study is to determine whether selective breeding impacts the gut and gill microbiome of the F. psychrophilum-resistant as compared to a background matched susceptible trout line. Mid-gut and gill samples were collected from juvenile fish maintained at high or low stocking densities and microbial diversity assessed by 16S rDNA amplicon sequencing. Results indicate that alpha diversity was significantly higher in the mid-gut of the susceptible line compared to the resistant line, while no significant differences in alpha diversity were observed in the gills. Mycoplasma sp. was the dominant taxon in the mid-gut of both groups, although it was present at a decreased abundance in the susceptible line. We also observed an increased abundance of the potential opportunistic pathogen Brevinema andersonii in the susceptible line. Within the gills, both lines exhibited similar microbial profiles, with Candidatus Branchiomonas being the dominant taxon. Together, these results suggest that selectively bred F. psychrophilum-resistant trout may harness a more resilient gut microbiome, attributing to the disease resistant phenotype. Importantly, interactions between host genetics and environmental factors such as stocking density have a significant impact in shaping trout microbial communities.


Assuntos
Resistência à Doença , Suscetibilidade a Doenças/imunologia , Doenças dos Peixes/imunologia , Infecções por Flavobacteriaceae/veterinária , Brânquias/microbiologia , Microbiota , Oncorhynchus mykiss , Animais , Cruzamento , Suscetibilidade a Doenças/microbiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/imunologia , Flavobacterium/fisiologia , Microbioma Gastrointestinal
13.
Front Genet ; 9: 286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123238

RESUMO

Bacterial cold water disease (BCWD), caused by Flavobacterium psychrophilum, is an endemic and problematic disease in rainbow trout (Oncorhynchus mykiss) aquaculture. Previously, we have identified SNPs (single nucleotide polymorphisms) associated with BCWD resistance in rainbow trout. The objectives of this study were (1) to validate the SNPs associated with BCWD resistance in a commercial breeding population; and (2) to evaluate retrospectively the accuracy of MAS (marker-assisted selection) for BCWD resistance in this commercial breeding program. Three consecutive generations of the Troutlodge May breeding population were evaluated for BCWD resistance. Based on our previous studies, a panel of 96 SNPs was selected and used to genotype the parents and ten offspring from each of the 138 full-sib families of the 2015 generation, and 37 SNPs associated with BCWD resistance were validated. Thirty-six of the validated SNPs were clustered on chromosomes Omy3, Omy8 and Omy25. Thus, at least three QTL (quantitative trait loci) for BCWD resistance were validated in the 2015 generation. Three SNPs from each QTL region were used for haplotype association analysis. Three haplotypes, Omy3TGG, Omy8GCG and Omy25CGG, were found to be associated with BCWD resistance in the 2015 generation. Retrospective analyses were then performed to evaluate the accuracy of MAS for BCWD resistance using these three favorable haplotypes. The accuracy of MAS was estimated with the Pearson correlation coefficient between the total number of favorable haplotypes in the two parents and the family BCWD survival rates. The Omy8 and Omy25 haplotypes were positively correlated with the family BCWD survival rates across all three generations. The accuracies of MAS using these two haplotypes together were consistently around 0.5, which was equal or greater than the accuracy of the conventional family-based selection in the same generation. In conclusion, we have demonstrated that MAS for BCWD resistance is feasible in this commercial rainbow trout breeding population.

14.
Dev Comp Immunol ; 87: 193-203, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29886053

RESUMO

Interleukin-1 receptor-like 1 (Il1rl1 or ST2), a member of the interleukin-1 receptor family, has pleiotropic roles including tissue homeostasis, inflammation, immune polarization, and disease resistance in mammals. A single orthologue was previously described in salmonid fish; however, a recently improved genome assembly of rainbow trout (Oncorhynchus mykiss) revealed three adjacent, tandem il1rl1 orthologues on chromosome Omy 03. Here, we report the genomic organization and evolution of the three il1rl1 genes (il1rl1α, il1rl1ß, il1rl1γ), and use both RNA-seq and gene-specific qPCR methods to quantify expression patterns. Nucleotide sequence homology between the three genes is >95% and each predicted protein contains three IG/IG-like domains, a transmembrane region and a TIR domain. The amino acid sequence homology of the rainbow trout il1rl1 genes are highly related to two functional copies in Atlantic and Coho salmon (∼94%) but relatively low (22-26%) with avian and mammalian species. Transcript abundance measured by RNA-seq in 15 tissues of healthy adult rainbow trout indicate constitutive expression of each gene. In whole body lysates, il1rl1α was shown to have >20 fold mRNA expression compared to il1rl1ß and il1rl1γ as measured by qPCR assays specific to il1rl1α or il1rl1γ, as well as a multi-gene qPCR assay (il1rl1α,ß,γ). Unrooted phylogenetic trees grouped the rainbow trout il1rl1 genes apart from other interleukin-1 receptor family genes and genomic comparisons identify preserved synteny between mammals, birds and salmonids albeit a pseudogene is present in both Atlantic salmon and Coho salmon. Phylogenetic analyses suggest that the three genes arose by tandem duplication but are inconclusive whether these events occurred prior-to or after salmonid speciation. These findings further the understanding of interleukin receptor family evolution and their contribution to teleost immune function.


Assuntos
Evolução Molecular , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Oncorhynchus mykiss/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos/genética , Duplicação Gênica/genética , Genoma/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/classificação , Filogenia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Homologia de Sequência do Ácido Nucleico , Sequências de Repetição em Tandem/genética
15.
J Anim Breed Genet ; 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29869355

RESUMO

Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r2  ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs.

16.
Front Microbiol ; 9: 138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467746

RESUMO

Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum species is analyzed using a set of 41 genomes, including 30 newly sequenced isolates. These were selected on the basis of available MLST data with the two-fold objective of maximizing the coverage of the species diversity and of allowing a focus on the main clonal complex (CC-ST10) infecting farmed rainbow trout (Oncorhynchus mykiss) worldwide. The results reveal a bacterial species harboring a limited genomic diversity both in terms of nucleotide diversity, with ~0.3% nucleotide divergence inside CDSs in pairwise genome comparisons, and in terms of gene repertoire, with the core genome accounting for ~80% of the genes in each genome. The pan-genome seems nevertheless "open" according to the scaling exponent of a power-law fitted on the rate of new gene discovery when genomes are added one-by-one. Recombination is a key component of the evolutionary process of the species as seen in the high level of apparent homoplasy in the core genome. Using a Hidden Markov Model to delineate recombination tracts in pairs of closely related genomes, the average recombination tract length was estimated to ~4.0 Kbp and the typical ratio of the contributions of recombination and mutations to nucleotide-level differentiation (r/m) was estimated to ~13. Within CC-ST10, evolutionary distances computed on non-recombined regions and comparisons between 22 isolates sampled up to 27 years apart suggest a most recent common ancestor in the second half of the nineteenth century in North America with subsequent diversification and transmission of this clonal complex coinciding with the worldwide expansion of rainbow trout farming. With the goal to promote the development of tools for the genetic manipulation of F. psychrophilum, a particular attention was also paid to plasmids. Their extraction and sequencing to completion revealed plasmid diversity that remained hidden to classical plasmid profiling due to size similarities.

17.
Front Genet ; 8: 156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109734

RESUMO

Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.

18.
Dev Comp Immunol ; 74: 190-199, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28479345

RESUMO

Bacterial Cold Water Disease (BCWD) is a common, chronic disease in rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp). Through selective breeding, the National Center for Cool and Cold Water Aquaculture has generated a genetic line that is highly resistant to Fp challenge, designated ARS-Fp-R (or R-line), as well as a susceptible "control" line, ARS-Fp-S (S-line). In previous studies, resistance to Fp had been shown to correlate with naive animal spleen size, and further, naïve R-line trout had been shown to have a lower abundance of IgM+ and IgM++ cells compared to S-line fish. Here we wished to first determine whether the abundance of IgT+ and/or IgT++ cells differed between the two lines in naïve fish, and if so, how these patterns differed after in vivo challenge with Fp. Fp challenge was by intramuscular injection of live Fp and tissue collections were on days 5, 6, and/or 28 post-challenge, in two independent challenge experiments. Flow cytometric and gene expression analyses revealed that naïve R-line fish had a higher abundance of IgT+ B cells in their anterior kidney, spleen, and blood, compared to S line fish. Further, that after Fp challenge, this difference was maintained between the two lines. Lastly, abundance of IgT+ B cells and expression of secHCtau correlated with lower Fp pathogen loads in challenged fish. In the anterior kidney, IgM+ B cell abundance correlated with increased Fp loads. Together, these results suggest that IgT+ B lineage cells may have a protective function in the immune response to Fp.


Assuntos
Linfócitos B/imunologia , Doenças dos Peixes/imunologia , Infecções por Flavobacteriaceae/imunologia , Flavobacterium/fisiologia , Imunoglobulinas/metabolismo , Oncorhynchus mykiss/imunologia , Proteínas tau/metabolismo , Animais , Animais Endogâmicos , Carga Bacteriana/genética , Cruzamento , Células Cultivadas , Doenças dos Peixes/microbiologia , Proteínas de Peixes , Regulação da Expressão Gênica , Predisposição Genética para Doença , Imunidade Inata/genética , Oncorhynchus mykiss/microbiologia , Proteínas tau/genética
19.
Genet Sel Evol ; 49(1): 17, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148220

RESUMO

BACKGROUND: Previously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation. METHODS: We compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents. RESULTS: The accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs. CONCLUSIONS: Using progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population.


Assuntos
Cruzamento , Temperatura Baixa , Resistência à Doença/genética , Doenças dos Peixes/genética , Modelos Genéticos , Oncorhynchus mykiss/genética , Linhagem , Seleção Genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Teorema de Bayes , Doenças dos Peixes/microbiologia , Marcadores Genéticos , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes
20.
Data Brief ; 11: 192-196, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28239633

RESUMO

A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset includes expression values for drpt, il11a, il1b1, il1b2, il1b3, il1r-like-1(e3-5), il1r-like-1(e9-11), il1r1-like-a, il1r1-like-b, il1r2, saa, tnfa1, tnfa2, tnfa3, tnfrsf1a, tnfrsf1a-like-a, tnfrsf1a-like-b, tnfrsf5, and tnfrsf9. Gene expression was measured at four time-points post-challenge in both a resistant line (ARS-Fp-R) and a susceptible line (ARS-Fp-S) of rainbow trout. In addition, fish body weight, spleen index and the Flavobacterium psychrophilum load are reported. These data are an extension of information presented and discussed in "Proinflammatory cytokine and cytokine receptor gene expression kinetics following challenge with Flavobacterium psychrophilum in resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss)" (Kutyrev et al., 2016) [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...